Significant mixed layer nitrification in a natural iron-fertilized bloom of the Southern Ocean
نویسندگان
چکیده
Nitrification, the microbially mediated oxidation of ammonium into nitrate, is generally expected to be low in the Southern Ocean mixed layer. This paradigm assumes that nitrate is mainly provided through vertical mixing and assimilated during the vegetative season, supporting the concept that nitrate uptake is equivalent to the new primary production (i.e., primary production which is potentially available for export). Here we show that nitrification is significant (~40–80% of the seasonal nitrate uptake) in the naturally iron-fertilized bloom over the southeast Kerguelen Plateau. Hence, a large fraction of the nitrate-based primary production is regenerated, instead of being exported. It appears that nitrate assimilation (light dependent) and nitrification (partly light inhibited) are spatially separated between the upper and lower parts, respectively, of the deep surface mixed layers. These deep mixed layers, extending well below the euphotic layer, allow nitrifiers to compete with phytoplankton for the assimilation of ammonium. The high contributions of nitrification to nitrate uptake are in agreement with both low export efficiency (i.e., the percentage of primary production that is exported) and low seasonal nitrate drawdown despite high nitrate assimilation.
منابع مشابه
The effects of dilution and mixed layer depth on deliberate ocean iron fertilization: 1-D simulations of the southern ocean iron experiment (SOFeX)
To better understand the role of iron in driving marine ecosystems, the Southern Ocean Iron Experiment (SOFeX) fertilized two surface water patches with iron north and south of the Antarctic Polar Front Zone (APFZ). Using 1-D coupled biological–physical simulations, we examine the biogeochemical dynamics that occurred both inside and outside of the fertilized patches during and shortly after th...
متن کاملA tale of three islands: Downstream natural iron fertilization in the Southern Ocean
Iron limitation of primary productivity prevails across much of the Southern Ocean but there are exceptions; in particular, the phytoplankton blooms associated with the Kerguelen Plateau, Crozet Islands, and South Georgia. These blooms occur annually, fertilized by iron and nutrient-rich shelf waters that are transported downstream from the islands. Here we use a high-resolution (1/128) ocean g...
متن کاملProgressive decoupling between phytoplankton growth and microzooplankton grazing during an iron-induced phytoplankton bloom in the Southern Ocean (EIFEX)
Dilution experiments were performed to quantify growth and mortality rates of phytoplankton groups (as defined by pigment markers) for 5 wk in an iron-induced phytoplankton bloom during the European Iron Fertilization Experiment (EIFEX) conducted in the Southern Ocean. Rates could be reliably measured for the 2 main groups, diatoms and prymnesiophytes. Mean phytoplankton intrinsic growth rates ...
متن کاملNitrogen cycling in the Southern Ocean Kerguelen Plateau area: evidence for significant surface nitrification from nitrate isotopic compositions
This paper presents whole water column data for nitrate N, O isotopic composition for the Kerguelen Plateau area and the basin extending east of Heard Island, aiming at understanding the N-cycling in this naturally iron fertilized area that is characterized by large re-current phytoplankton blooms. The KEOPS 2 expedition (October– November 2011) took place in spring season and complements knowl...
متن کاملShelf-derived iron inputs drive biological productivity in the southern Drake Passage
[1] In the Southern Ocean near the Antarctic Peninsula, Antarctic Circumpolar Current (ACC) fronts interact with shelf waters facilitating lateral transport of shelf-derived components such as iron into high-nutrient offshore regions. To trace these shelf-derived components and estimate lateral mixing rates of shelf water, we used naturally occurring radium isotopes. Short-lived radium isotopes...
متن کامل